二元乙丙橡胶的用途 二元乙丙橡胶的用途有哪些 居然可以这样!

未知

防水可以减少维修和维护成本,及时的防水措施可以避免长期水损引起的昂贵修复费用。今天让小编来大家介绍下关于二元乙丙橡胶的用途的问题,为在防水方面有需要的人群解疑答惑。

文章目录列表:

1.下面两种橡胶的分子结构有何区别?(200字内)
2.各种橡胶的用途

二元乙丙橡胶的用途 二元乙丙橡胶的用途有哪些 居然可以这样!

下面两种橡胶的分子结构有何区别?(200字内)

三元乙丙橡胶是乙烯、丙烯以及非共轭二烯烃的三元共聚物,1963年开始商业化生产。每年全世界的消费量是80万吨。EPDM最主要的特性就是其优越的耐氧化、抗臭氧和抗侵蚀的能力。由于三元乙丙橡胶属于聚烯烃家族,它具有极好的硫化特性。在所有橡胶当中,EPDM具有最低的比重。它能吸收大量的填料和油而影响特性不大。因此可以制作成本低廉的橡胶化合物。

分子结构和特性

三元乙丙是乙烯、丙烯和非共轭二烯烃的三元共聚物。二烯烃具有特殊的结构,只有两键之一的才能共聚,不饱和的双键主要是作为交链处。另一个不饱和的不会成为聚合物主链,只会成为边侧链。三元乙丙的主要聚合物链是完全饱和的。这个特性使得三元乙丙可以抵抗热,光,氧气,尤其是臭氧。三元乙丙本质上是无极性的,对极性溶液和化学物具有抗性,吸水率低,具有良好的绝缘特性。

在三元乙丙生产过程中,通过改变三单体的数量,乙烯丙烯比,分子量及其分布以及硫化的方法可以调整其特性。

EPDM第三单体的选择

第三二烯烃类型的单体是通过乙烯和丙烯的共聚,在聚合物中产生不饱和,以便实现硫化。第三单体的选择必须满足以下要求:

最多两键:一个可聚合,一个可硫化

反应类似于两种基本的单体

主键随机聚合产生均匀分布

足够的挥发性,便于从聚合物中除去

最终聚合物硫化速度合适

二烯烃类型和含量对聚合物特性的影响

三元乙丙生产中主要是用ENB和DCPD。

三元乙丙中最广泛使用的是ENB,它比DCPD产品硫化要快得多。在相同的聚合条件下,第三单体的本质影响着长链支化,按以下顺序递增:EPM<EPDM(ENB)<EPDM(DCPD)

三元乙丙其他的受二烯烃第三单体影响的还有:

ENB-快速硫化,高拉伸强度,低永久形变

DCPD-防焦性,低永久应变,低成本

随着二烯烃第三单体的增加,将会有下列影响发生:更快硫化率,更低的压缩形变,高定伸,促进剂选择的多样性,减少的防焦性和延展,更高的聚合物成本。

乙烯丙烯比

乙烯丙烯比可以在硫化阶段进行改变,商业的三元乙丙聚合物乙烯丙烯比由80/20到50/50。当乙烯丙烯比由50/50变化到80/20时,正面的影响有:更高的压坯强度,更高的拉伸强度,更高的结晶化,更低的玻璃体转化温度,能将原材料聚合物转化成丸状,以及更好的挤出特性。不好的影响就是不好的压延混合性,较差的低温特性,以及不好的压缩形变。

当丙烯比例更高时,好处就是更好的加工性能,更好的低温特性以及更好的压缩形变等。

分子量和分子量分布

弹性体的分子量通常用门尼粘度表示。在三元乙丙的门尼粘度中,这些值是在高温下得到的,通常为125℃,这样做的主要原因是要消去由高乙烯含量所产生的任何影响(结晶化),由此会掩盖聚合物的真正分子量。三元乙丙的门尼粘度范围在20到100之间。也有更高分子量的商用三元乙丙也有生产,但一般都充油,以便混炼。

分子量以及在三元乙丙中的分布可以在聚合过程中通过以下途径聚合:

催化剂以及共催化剂的类型和浓度

温度

改性剂,如氢的浓度

三元乙丙的分子量分布可以通过凝胶渗透色谱法使用二氯苯作为溶剂在高温下(150℃)测量而得。分子量分布通常被称为是重量平均分子量与数量平均分子量的比例。根据普通和高度支化的结构,这个值在2到5之间变化。由于有分键,含有DCPD的三元乙丙橡胶更宽的分子量分布。

通过增加三元乙丙的分子量,正面影响有:更高的拉伸和撕裂强度,在高温情况下更高的生坯强度,能够吸收更多的油和填料(低成本)。随着分子量分布的增加,正面的影响有:增加的混炼和碾磨加工性。但是,较窄的分子量分布可以改进硫化速度,硫化状态以及注塑行为。

硫化类型

三元乙丙可以利用有机过氧化物或者硫来进行硫化。但是,相比与硫磺硫化,过氧化物交链的三元乙丙用于电线电缆工业时具有更高的温度抗性,更低的压缩形变以及改进的硫化特性。过氧化物硫化的不好的地方就在于更高的成本。

正如前面所提到的,三元乙丙的交链速度和硫化时间随着硫化类型和含量而改变。当三元乙丙与丁基,天然橡胶,丁苯橡胶混合时,在选择合适的三元乙丙产品时,必须要考虑到下列因素:

当与丁基进行混合时,由于丁基具有较低的不饱和度,为适应丁基的硫化速度,最好选择相对较低含量的DCPD和ENB含量的三元乙丙。

当与天然橡胶和丁苯橡胶混合时,最好选择8%到10%ENB含量的三元乙丙,以满足其硫化速度。

乙丙橡胶是一种无定型的非结晶橡胶,其分子主链上乙烯与丙烯单体单元呈无规排列。失去了聚乙烯或聚丙烯结构的规整性,成为具有弹性的橡胶。三元乙丙橡胶虽然引入了二烯烃类作第三单体,但由于二烯烃位于侧链上,主链与二元乙丙橡胶一样,是不含双键的完全饱和的直链型结构,故三元乙丙橡胶不但保持了二元乙丙橡胶的各种优良特性,又实现了用硫黄硫化的目的。乙丙橡胶内聚能低,无庞大侧基阻碍分子链运动。因而能在较宽的温度范围内保持分子链的柔性和弹性。乙丙橡胶的组成、化学结构及其单体单元的排列方式等决定了乙丙橡胶具有许多特有的性质。

各种橡胶的用途

乙丙橡胶和聚乙烯、聚丙烯同属于聚烯烃,它们不但是近邻,而且有着亲缘关系。

大家知道,聚烯烃树脂是塑料中产量最大的品种。实际上,分子量达到一定程度的聚烯烃,只要不结晶,都有一定的弹性。但当乙烯丙烯共聚物中的乙烯摩尔含量在45%~70%时,表现出的橡胶性能最好。乙烯结合量如果过低或过高,都会使聚合物发脆。

仅以乙烯和丙烯为单体共聚得到的橡胶称为二元乙丙橡胶。这种橡胶除链端外是不含双键的,只能用过氧化物交联,所以大都需要加入少量第三单体(主要是亚乙基降冰片烯或双环戊二烯)来提供硫化点后,才能制成性能更好的三元乙丙橡胶。

乙丙橡胶最突出的性能是耐老化,它有长期经受严寒、炎热、干燥、潮湿的能力,可在100~120℃长期使用,不会像一般橡胶那样容易发生裂纹。因此,乙丙橡胶在各种密封件、耐热胶管、防水卷材以及绝缘防护材料的应用方面特别受到欢迎。可以说,乙丙橡胶是用途最广泛的合成橡胶,所以它的发展速度也比其他橡胶快。

乙丙橡胶在原料、催化剂体系、合成工艺、基本性质乃至加工应用方面与聚烯烃树脂有许多相同或相似之处,它们互相有一种难以分舍的相依关系,人们将这种现象称之为“橡塑合流”。

包括乙丙橡胶在内的聚烯烃,传统上都采用齐格勒—纳塔催化体系来聚合。随着20世纪80年代另一类高活性催化剂—茂金属催化剂的问世,1997年6月,茂系乙丙橡胶也在美国实现了工业化。这类催化剂的聚合活性比传统催化剂要高2~3个数量级,每克钛金属可生产150千克以上的橡胶,橡胶的生产工艺流程简化,产品质量也更好。

生产乙丙橡胶一般用的是溶液或悬浮聚合法。美国从20世纪90年代初就致力于开发乙丙橡胶的气相法,试图把他们生产聚乙烯的工艺嫁接到乙丙橡胶的生产中,几经周折,终于在20世纪末初步实现了工业化。

乙丙橡胶和聚烯烃类热塑性弹性体则更属于一个家族。随着各种新型催化剂的发现,在这个家族内不断出现新成员,它们之中的杰出代表是乙烯—辛烯共聚物和乙丙热塑性共聚物。乙丙橡胶将来肯定还会有更多的“兄弟和近邻”。

 橡胶,意为“流泪的树”。橡胶制品广泛应用于工业或生活各方面。以下是我为大家整理的各种橡胶的用途,仅供参考,希望能够帮助大家。

 聚氨酯橡胶

 聚氨酯橡胶代号(UR),是由聚酯(或聚醚)与二异氰胺脂类化合物聚合而成的。它的化学结构比一般弹性聚合物复杂,除反复出现的氨基甲酸酯基团外,分子链中往往还含有酯基、醚基、芳香基等基团。

 特性:具有硬度高、强度好、高弹性、高耐磨性、耐撕裂、耐老化、耐臭氧、耐辐射及良好的导电性等优点,是一般橡胶所不能比的。

 应用:聚氨酯橡胶主要应用于国防,汽车,电子,印刷,钢铁、造纸、纺织、印刷等工业。其次也应用于人体的器官和医疗卫生器具方面以及运动塑胶场地。

 丁腈橡胶:

 丁腈橡胶是由丁二烯和丙烯腈经乳液聚合法制得的,主要采用低温乳液聚合法生产。丁腈橡胶中丙烯腈含量(%)有42~46、36~41、31~35、25~30、18~24等五种。

 特性:丁腈橡胶不仅耐油性好,耐磨性高,耐热性好,同时还具有良好的耐水性、气密性及优良的粘合性能。它的.耐磨性、耐热性及化学药品的稳定性均优于天然橡胶、氯丁橡胶和丁苯橡胶。

 应用:广泛应用于制造各种耐油像胶制品,也用于制作胶板和耐磨零件,软管以及燃料箱衬胶、印刷滚筒、油罐衬里、绝缘地面塾板、耐油鞋底、硬橡胶零件、织物涂层、管螺纹保护层、泵的叶轮以及电线包皮、胶粘剂、食品包装用薄膜、橡胶手套等领域。

 硅橡胶

 硅胶是一种高活性吸附材料,属非晶态物质,其化学分子式为mSiO2·nH2O。不溶于水和任何溶剂,无毒无味,化学性质稳定,除强碱、氢氟酸外不与任何物质发生反应。各种型号的硅胶因其制造方法不同而形成不同的微孔结构。

 特性:它具有许多其他同类材料难以取代得特点:吸附性能高,对人的皮肤能产生干燥作用。化学性质稳定、有较高的机械强度,耐热耐寒性极好,环保无毒,可直接接触食品。同时硅胶有抗辐射性,阻燃性,耐紫外线、耐臭氧、耐冲压、耐酸碱、耐磨、难燃、耐电压、导电性能。

 应用:在汽车工业,在电子、电气工业,在建筑工业,在医疗领域。除了上述各种应用外,硅橡胶在纺织、印刷、塑料、化学、配套电器、玩具、五金、体育用品、音响、灯饰、造纸及食品和化妆等领域的应用也明显增加。

 氟橡胶

 氟橡胶(FKM)是主链或侧链的碳原子上含有氟原子的合成高分子弹性体,由于氟原子强的负电性,其强大的吸电子能力使聚合物分子链上 C-C 键能变更大,主价键更加稳定;同时,由于氟原子体积略大于氢原子,能对分子链形成屏蔽效应,免受外来腐蚀介质的侵蚀。

 特性:耐高温、耐油、耐化学介质性能,良好的物理机械性能和耐候性、电绝缘性和抗辐射性等,在所有合成橡胶中其综合性能最佳。

 应用:氟橡胶(FKM)用于制作耐高温、耐油、耐介质的橡胶制品,如各种隔膜、胶管、胶布等。在航空、汽车、石油、化工等领域得到了广泛的应用。在军事工业上,氟橡胶主要用于航大、航空及运载火箭、卫星、战斗机、新型坦克的密封件、油管和电气线路护套等方面,是国防尖端工业中无法替代的关键材料。

 三元乙丙橡胶

 三元乙丙橡胶是乙烯、丙烯和少量的非共轭二烯烃的共聚物,是乙丙橡胶的一种,以EPDM(Ethylene Propylene Diene Monomer)表示,因其主链是由化学稳定的饱和烃组成,只在侧链中含有不饱和双键。

 特性:三元乙丙橡胶有优异的耐天候、耐臭氧、耐热、耐酸碱、耐水蒸汽、颜色稳定性、电绝缘性能和耐电晕性、充油性及常温流动性。

 应用:可广泛用于汽车部件、轮胎、建筑用防水材料、电线电缆护套、耐热胶管、胶带、汽车密封件、油品改性剂、聚烯烃改性剂、洗衣机部件、太阳能集热器等领域。

 橡胶成分

 天然橡胶是由胶乳制造的,胶乳中所含的非橡胶成分有一部分就留在固体的天然橡胶中。一般天然橡胶中含橡胶烃92%-95%,而非橡胶烃占5%-8%。由于制法不同,产地不同乃至采胶季节不同,这些成分的比例可能有差异,但基本上都在范围以内。

 蛋白质可以促进橡胶的硫化,延缓老化。另一方面,蛋白质有较强的吸水性,可引起橡胶吸潮发霉、绝缘性下降,蛋白质还有增加生热性的缺点。

 丙酮抽出物是一些高级脂肪酸及固醇类物质,其中有一些起天然防老剂和促进剂作用,还有的能帮助粉状配合剂在混炼过程中分散并对生胶起软化的作用。

 灰分中主要含磷酸镁和磷酸钙等盐类,有很少量的铜、锰、铁等金属化合物,因为这些变价金属离子能促进橡胶老化,所以他们的含量应控制。

 干胶中的水分不超过1%,在加工过程中可以挥发,但水分含量过多时,不但会使生胶储存过程中易发霉,而且还会影响橡胶的加工,如混炼时配合剂易结团;压延、压出过程中易产生气泡,硫化过程中产生气泡或呈海绵状等。

通过上文,想必您都对二元乙丙橡胶的用途有哪些有了一定的了解,建筑防水工程的质量不仅影响建筑物的本身,还关系到建筑物周围的环境和人们的生产生活,希望以上内容对您有用,能解决您的问题,更多防水问题请咨询防水专业人员。

温馨提示:防水施工需要优质的防水材料以及专业的防水施工人员,才能确保建筑未来很长一段时间不渗水,如果您不懂,但是确实有这方面的需求,您可以联系我:(点击电话即可复制)

标签:二元乙丙橡(1)