人工鱼塘生态系统的能量来源包括 人工鱼塘生态系统的能量来源包括哪些 实用技能!

未知

防水是提高建筑物整体质量和价值的重要环节。只有确保防水的有效性,才能保证建筑物的长期可持续发展和使用安全。今天让小编来大家介绍下关于人工鱼塘生态系统的能量来源包括的问题,为在防水方面有需要的人群解疑答惑。

文章目录列表:

1.如何分析人工鱼塘生态系统能量流动
2.生态农业的发展必须遵循生态学原理,有时为了实现高产出,需要人为的能量输入.图是人工鱼塘生态系统的能
3.人工生态系统的能量来源是
4.以鱼塘为例分析生态系统的组成 能量流动及物质循环

人工鱼塘生态系统的能量来源包括 人工鱼塘生态系统的能量来源包括哪些 实用技能!

如何分析人工鱼塘生态系统能量流动

分析:图中各营养级的能量进出平衡,进入的能量是其同化的能量和有机物输入,而能量的去向有流向下一营养级、分解者利用、呼吸消耗和未被利用等,所以A表示呼吸作用.

解答: 解:(1)生物群落群落是指具有直接或间接关系的多种生物种群的有规律的组合,包括所以的动物、植物和微生物.池塘中的水草、鱼、细菌等生物共同构成生物群落.由图发现流入系统的总能量不仅仅是生产者所固定的太阳能,还有有机物输入的化学能.鱼塘中鱼类等生物的分层现象称为生物群落的垂直结构.

(2)某营养级的能量的去向有流向下一营养级、分解者利用、呼吸消耗和未被利用等,图中已经有分解者分解、流向下一营养级和未被利用,所以A表示呼吸作用.肉食性动物用于自身生长发育繁殖的能量有三个去向:分解者、下一营养级、未被利用,所以肉食性动物用于自身生长发育繁殖的能量为5.2+0.25+0.05=5.5J/cm2?a.

(3)土壤中小动物的丰富度一般采用取样器取样法进行采集、调查.

(4)当日照时间达到一定长度时,草鱼才能够产卵,这是受物理信息光照的影响,体现了生态系统的信息传递功能.

(5)光合作用利用二氧化碳的量和人类的化石燃料的燃烧使用量的季节差异导致大气中CO2浓度夏季下降,冬季上升.

生态农业的发展必须遵循生态学原理,有时为了实现高产出,需要人为的能量输入.图是人工鱼塘生态系统的能

生态系统的能量来源于:太阳能。

一、生态系统

生态系统指在自然界的一定的空间内,生物与环境构成的统一整体,在这个统一整体中,生物与环境之间相互影响、相互制约,不断演变,并在一定时期内处于相对稳定的动态平衡状态。范围可大可小,相互交错,最大的生态系统是生物圈;最为复杂的生态系统是热带雨林生态系统,人类主要生活在以城市和农田为主的人工生态系统中。

二、太阳能

生态系统的能量是太阳能,太阳能以光的形式照射在地球表面,被植物吸收,通过光合作用转化为有机物质,从而形成食物链,因此生态系统的能量来源于太阳能。生态系统亦称生态系,由生物之间、生物与其生存环境之问相互作用不断进行物质循环和能量流动而呈现出整体功能的综合体系。

太阳能(Solar Energy),一般是指太阳光的辐射能量,在现代一般用作发电。自地球形成生物就主要以太阳提供的热和光生存,而自古人类也懂得以阳光晒干物件,并作为保存食物的方法,如制盐和晒咸鱼等。但在化石燃料减少下,才有意把太阳能进一步发展。太阳能的利用有被动式利用(光热转换)和光电转换两种方式。

太阳能发电一种新兴的可再生能源。广义上的太阳能是地球上许多能量的来源,如风能、化学能、水的势能等等。在几十亿年内,太阳能是取之不及、用之不竭的理想能源。

太阳能是由内部氢原子发生聚变释放出巨大核能而产生的能,来自太阳的辐射能量。太阳能发电系统人类所需能量的绝大部分都直接或间接地来自太阳。植物通过光合作用释放氧气、吸收二氧化碳,并把太阳能转变成化学能在植物体内贮存下来。

人工生态系统的能量来源是

(1)人工鱼塘的能量输入不能完全由生产者提供,必须人工投入有机物补充,从根本上来说是提高了鱼塘中草鱼的环境容纳量.

(2)A代表各营养级呼吸作用散失的能量,植食性动物流入肉食性动物体内被同化的能量=0.05+0.25+2.1+5.1-5=2.5.

(3)生态系统中的信息传递可以调节群落内的种间关系,维持生态系统的稳定.

故答案为:

(1)环境容纳量

(2)呼吸作用(散失热能) 2.5

(3)信息传递

以鱼塘为例分析生态系统的组成 能量流动及物质循环

人工生态系统的能量来源是阳光。根据查询相关公开信息能量是生态系统的动力,在生态系统中只有绿色植物才能进行光合作用固定太阳能。消费者的能量来自生产者,生产者体内的能量是来自光合作用固定的太阳能。生态系统的范围可大可小,相互交错,太阳系就是一个生态系统,太阳就像一台发动机,源源不断给太阳系提供能量。地球最大的生态系统是生物圈;最为复杂的生态系统是热带雨林生态系统,人类主要生活在以城市和农田为主的人工生态系统中。阳光是绝大多数生态系统直接的能量来源,水、空气、无机盐与有机质都是生物不可或缺的物质基础。

一个池塘其实就是一个小的生态系统。在这个系统中,其生物因子包括:微生物、浮游生物、底栖生物、鱼类等,非生物因子包括:池水、底泥、光能、温度、营养盐、PH值及溶于水中的气体等,这些生物和非生物因子组成了一个互相联系、互相依存、互相制约的统一体,这就是池塘的生态系统。它们在正常情况下其内部结构、物质循环、能量流动保持相对稳定,即生态平衡。

海洋生态

任何物质或元素都处在循环的某个阶段,他们通过生态系统中生物有机体和无生命环境之间的循环活动过程就叫做生态系统的物质循环,生态系统的物质循环和能量流动是紧密联系,不可分割的。能量在食物链中是向着一个方向逐级流动,不断消耗和散失,而物质则可被生物多次利用,在生态系统中不断地循环,或是从一个生态系统消失而又在另一个生态系统出现。这是物质循环和能量流动的重要特征。(海洋中生产者体积小,但是群体大。消费者体积大)依据在生态系统中的功能可划分为三大功能类群:生产者、消费者和分解者。生产者通过光合作用不仅为本身的生存、生长和繁殖提供营养物质和能量,而且也为消费者和分解者提供唯一的能量来源。海洋生态系统中的生产者包括所有海洋中的自养生物,这些生物可以通过光合作用把水和二氧化碳等无机物合成为碳水化合物、蛋白质和脂肪等有机化合物,把太阳辐射能转化为化学能,贮存在合成有机物中。。太阳能只有通过生产者的光合作用才能源源不断地输入生态系统,然后再被其它生物所利用。值得提出的是,深海热泉生态系统的生产者能通过化能作用制造有机物,而陆地上没有这样的生产者。消费者是指依靠动植物为食的动物。直接吃植物的动物叫植食动物,又叫一级消费者,如大多数海洋双壳类、钩虾、哲水蚤、鲍等;捕食动物的叫肉食动物,也叫二级消费者,如海蜇、箭虫、对虾和许多鱼类等;以后还有三级消费者、四级消费者,直到顶位肉食动物。消费者也包括那些既吃植物也吃动物的杂食动物,如鲻科鱼类、只吃死的动植物残体的食碎屑者和寄生生物。分解者在任何生态系统中都是不可缺少的组成成分。它的基本功能是把动植物死亡后的残体分解为比较简单的化合物,最终分解为无机物,并把它们释放到环境中去,供生产者再重新吸收和利用。在全球生态系统的动态平衡中,资源分解的主要作用有:①通过死亡物质的分解,使营养物质再循环,给生产者提供营养物质;②维持大气中CO2浓度;③稳定和提高土壤有机物质的含量,为碎屑食物链以后各级生物提供食物;④改变土壤物理性状,改变地球表面惰性物质.因此,分解过程对于物质循环和能量流动具有非常重要的意义。此外,还有一些以动植物残体和腐殖质为食的动物,在物质分解的总过程中发挥着不同程度的作用,如沙蚕、海蚯蚓和刺海参等,有人把这些动物称为大分解者,而把细菌和真菌称为小分解者。它们在生态系统中的重要作用是把复杂的有机物分解为简单的无机物,归还到环境中供生产者重新利用。分解作用的意义主要在于维持全球生产和分解的平衡.生物量指水体单位面积或单位体积内生物有机质的重量。在海洋,生产量一般随生物量增加而增加。周转率是指一定时间内新增加的生物量P与这段时间内平均生物量B的比率P/B系数。在海洋中,初级生产量以珊瑚礁和海藻床为最高,其变化趋势是由河口湾向大陆架到海洋而逐渐减少。占地球表面积71%的大洋,其生物生产力很低,所以有人将其称之为“生物学的荒漠。海洋初级生产力的季节变动是中等程度的,而陆地生产力的季节波动则很大,夏季比冬季生产力平均高60%。周转率一般都随生物量的增加而增加。从P/B比值(或称周转率)来看,个体越小的种类,P/B比值越大,虽然生物量小,但周转时间短,结果产量高。一般地,海洋的生物量比陆地增加的速度快。海洋生态系统中的植食动物有着极高的取食效率,海洋动物利用海洋植物的效率约相当于陆地动物利用陆地植物效率的5倍。正是由于这一点,海洋的初级生产量总和虽然只有陆地初级生产量的1/3,但海洋的次级生产量总和却比陆地高得多在海洋中植食性动物对初级生产者的利用效率要高于陆地也高于肉食性动物以及杂食性动物对营养的利用率,因为在海洋中植食性动物大多以浮游植物和海草海藻等为食,摄食的时候基本将食物全部摄入,并且进行比较良好的消化。而在陆地上,大部分植食性动物只摄食植物的一部分,而根或是茎则被遗弃,或是进食之后并没有进行很好的消化就排出体外。不同生态系统中食草动物的消费效率是不相同的.①植物种群增长率高,世代短,更新快,其被利用的百分率就高;②草本植物的支持组织比木本植物的少,能提供更多的净初级生产量为食草动物所利用;③小型浮游植物的消费者(浮游动物)密度很大,利用净初级生产量比例最高。肉食性动物也是同样的道理,所以在海洋中植食性动物对初级生产者的利用率是最高的。海洋生物群落中,从植物、细菌或有机物开始,经植食性动物至各级肉食性动物,依次形成摄食者与被食进的营养关系,称为海洋食物链。因为海洋中一种生物往往以多种其他生物为生,而它本身也为多种生物所食,所以每种生物在一个海域中是处于不同的营养层次之中。这样,整个海域中各种生物彼此之间的食物关系就构成一个错综复杂的网络结构,这就是海洋食物网。物质和能量经过海洋食物网的各个环节所进行的转换与流动,是海洋生态系中的物质循环和能量流动的一个基本过程。不同层次的消费者(个体、群体或种群直到群落)在其不同的生态位发挥着作用。物质和能量沿着食物链传递过程中不断地消耗,其消耗量视不同的摄食者对所摄食食物的实际利用效率而定。一般说来,食物链每升高一个层次,有机物质量能量就要损失一部分,食物链的层次越多,总体效率就越低。因此,从初级生产者浮游植物、底栖植物或碎屑算起,处于食物链层次越高的动物,其相对数量越少。相反,处于食物链层次越低的动物,其相对数量越多。这便形成生物量度能量的金字塔。而食物链(网)越复杂,生态系统的主要动能。(1)海洋食物链较长,特别是大洋区食物链经常达到4~5级。而陆生食物链通常仅有2~3级,很少达到4~5级。(2)海洋食物链的许多环节是可逆的、多分支的,加上碎屑食物链、植食食物链和腐食食物链相互交错,网络状的营养关系比陆地的更多样、更复杂。因此,在海洋中用食物网更能确切表达海洋生物之间的营养关系。(3)食物链只表示有机物质和能量从一种生物传递到另一种生物中的转移与流动方向,而不表示每一营养层所需的有机物和能量的数量(即生物量和热量)。(4)食物链每升高一个层次,有机物质和能量就要有很大的损失,食物链的层次越多,总体效率越低。因此,从初级生产者浮游植物、底栖植物或碎屑算起,处于食物链层次越高的动物,其相对数量越少;相反,处于食物链层次越低的动物,其相对个体数量越多。贮存在生产者体内的能量沿着食物链传递时会大量消耗,能流越来越细,营养级间的能量转移效率平均只有10%~15%左右。这便构成了生物量金字塔和能量金字塔。(5)食物网的结构是可变的。从食物网的定义,我们已知在自然界中,一种生物往往摄食多种生物,而其本身也为多种生物所食。因而每种生物在一个海域中是处于不同食物链的不同环节,或者说处于不同的营养层次之中。这样,整个海域各种生物彼此之间的食物关系,就成了一个错综复杂的网络结构。事实上,同一种鱼也依其发育生长阶段、季节和所在海域的不同,其饵料也各异,所以食物网的结构是会改变的。图 海洋食物链类型能量流动,物质循环和信息传递是生态系统的三大功能.生产者所固定的能量和物质,通过一系列取食和被食的关系在生态系统中传递,各种生物按其食物关系排列的链状顺序称为食物链.由于受能量传递效率的限制,食物链的长度不可能太长,一般食物链都是由4~5个环节构成的。生态系统中的食物链不是固定不变的,只有在生物群落组成中成为核心的,数量上占优势的种类所组成的食物链才是稳定的。捕食食物链:直接以生产者为基础,继之以植食性动物和肉食性动物,能量沿着太阳→生产者→植食性动物→肉食性动物的途径流动.如:青草→野兔→狐→狼.在大多数生态系统中,净初级生产量只有很少一部分通向捕食食物链,不是主要的食物链.2)碎屑食物链:以碎屑为基础,高等植物的枯枝落叶被分解者分解成碎屑,然后再为多种动物所食.其构成方式为枯枝落叶→分解者或碎屑→食碎屑动物→小型肉食动物→大型肉食动物.除此之外,还有寄生食物链,可认为是捕食食物链的特例。生态系统中许多食物链彼此交错连接,形成的一个网状结构.一般说来,生态系统中的食物网越复杂,生态系统抵抗外力干扰的能力就越强,其中一种生物的消失不致引起整个系统的失调;生态系统的食物网越简单,生态系统就越容易发生波动和毁灭,尤其是在生态系统功能上起关键作用的种,一旦消失或受严重损害,就可能引起这个系统的剧烈波动.一个复杂的食物网是使生态系统保持稳定的重要条件。

通过上文的阅读,想必各位都对人工鱼塘生态系统的能量来源包括哪些有了一定的了解,建筑防水工程的重要性不容忽视,只有做好防水工作,才能保证建筑物的安全、舒适和持久,希望以上内容对您有用,能解决您的问题,更多防水问题请咨询防水专业人员。

温馨提示:防水施工需要优质的防水材料以及专业的防水施工人员,才能确保建筑未来很长一段时间不渗水,如果您不懂,但是确实有这方面的需求,您可以联系我:(点击电话即可复制)

标签:人工鱼塘生(2)